CHAPTER IV. REQUIREMENTS – SUMMARY AND CONCLUSIONS

To create successful computerization of exhibit information, there must be clear objectives backed by strong leadership. The following five factors are essential:

1. Project Manager: Choosing one coordinator or project manager who will be responsible for seeing the project planned, negotiated, purchased, and maintained.

3. Set Standards: Defining data in the form of data standards, thesaurus, a data dictionary and a system manual. This includes writing system specifications.

4. Research: Researching software and hardware requirements, staff needs, and cost. Software vendors ask for this information in a Request for Proposal.

5. Support: Providing for system support, mechanical backup plans and interchange of data.

A. STUDY CONCLUSIONS

1. A Local Area Network (LAN) can be used to enable exchange of travelling exhibit information.

A Local Area Network can link the principal museum departments (Registration, Exhibition, Publications, Conservation, and the Curatorial offices) involved in the

95. R.B. Light and D. A. Roberts, Microcomputers in Museums (MDA, 1984), 26-30. Light and Roberts suggest four steps in choosing a computer and seven steps in acquiring and running a system. From this complete list, the author has taken a few of their suggestions.

travelling exhibit process. If software programs are generally similar in a museum, with most departments using popular software packages like Lotus 1-2-3 for financial management, dBASE III Plus for data management and various word processing programs (Multimate, WordPerfect, Volkswriter, Microsoft Word), then staff can exchange files. Exchanging basic information on floppy disks rather than on paper would save staff time. The word processing data files require translation by simple software programs such as Word-For-Word or Software Bridge. The recent proliferation of software has made conversion programs like these popular. Many conversion programs were developed in the last year for commercial use. Financial and database information can be imported into the word processing software.

2. A computer system for travelling exhibits can be created using the existing diverse hardware equipment, connected with a LAN and modems.

If some museum departments have confined themselves to word processors and typewriters with memory capability, exchange of information will have to be limited to printed material. If different hardware systems are used, like IBM, Apple, and Hewlett Packard, that require different software, conversion programs are needed. If buildings are several miles from each other, computer connections would have to be via phone lines and modems. All of this diversity adds cost in time and money to the overall system.

A "large scale" system would probably require purchasing auxiliary system space. All of the data fields in the data dictionary would be included. The database would reside in the department that generates the largest percentage of the exhibit fields.

A "scaled-down" system would put essential information in a database file in the department that generates the most exhibit documentation. It would connect to the Exhibits Manager (who would have another separate database), Publications, Conservation and those Curators interested in the system (for example, Textiles, American Paintings, and European Paintings). The Exhibits Manager’s information would have sharing capabilities with all departments connected to the LAN. "Essential" information would include data from the four forms previously mentioned (Loan Form, related Agreement forms, and Object Movement form). These four forms contain the most used information data fields. Budget Preparation, Insurance, Photo, and Packing fields might be added to this database, or could be kept in related database files. The Packing fields can produce Painting and Crate Labels. Publication, Membership and Travel.
Expense information could reside in separate department computers, with these departments sharing information with the central computer via floppy disk, tape, or modem.

3. **Software possibilities include custom programs or ready-built programs.**

Various possibilities are: designing custom programs and reports for currently owned software; purchasing a powerful database like Revelation or ZIM and then designing custom programs and reports; investigating systems that are already built like MOSC, Wingate and Johnston, D.K. Lindemuth, AFA and the museum systems mentioned in Chapter III for compatibility and cost.

Additional work on software data space requirements need to be considered. A considerable data storage requirement results from holding information on many exhibits at the same time. If a museum wanted to hold information on at least ten exhibits with 50 to 250 records per exhibit (each record represents an object in the exhibit) and possibly twenty incomplete future exhibits with a similar amount of records per exhibit, then with simple calculations, one can see that the system needs space for 7,500 records, without taking into account additional space needed for index files and program files. If all the data dictionary fields are used, the system would require over 32 million bytes, without indexes and program files. Obviously, fields need to be shorter, or fewer fields need to be used, if the budget is limited.

Software choices for a travelling exhibit computer system become clearer when the staff take time to define the manual information to create data standards, to consider the various software possibilities, to review the present software and hardware owned by the museum, and to consider the spatial separation of the museum departments. With additional work on developing a data model, technical specifications, cost estimates, and financial feasibility, a museum should have a better idea of their options. A project manager should evaluate vendors, send them each a request for proposal, and finally carefully scrutinize received contracts to see that they meet the requirements of the museum.